(Continuare din numarul anterior)
S-au realizat o serie de studii numerice, care urmeaza sa trateze urmatoarele probleme:
• validarea algoritmului de amplasare optima a amortizoarelor, in domeniul neliniar de comportare;
• verificarea oportunitatii reabilitarii cladirilor, prin introducerea amortizoarelor vascoase;
• masura in care amortizoarele vascoase reduc raspunsul seismic datorat cutremurelor de tip puls, specifice sursei Vrancea;
• impactul asupra elementelor structurii, datorat introducerii acestor amortizoare in structura.
Analizele dinamice neliniare au fost realizate cu programul de calcul dinamic neliniar PERFORM 3D. Numarul de modele analizate este 18, compus din 6 structuri, trei din beton armat si trei din otel. Pentru fiecare structura s-au analizat cate 3 modele, primul fara amortizoare, cel de-al doilea cu amortizoare dispuse uniform si cel de-al treilea cu o distributie optima a amortizoarelor. Fiecare model este supus la 7 accelerograme, scalat fiecare in medie pe 8 nivele, asociate unor intervale medii de revenire. In total, au fost realizate in jur de 1.000 de analize dinamice neliniare.
Prima structura studiata este din beton armat si este alcatuita exclusiv din cadre. Pentru toate structurile se propune un nivel de amortizare echivalenta dezvoltata de amortizoarele vascoase de 25% pe baza careia se calculeaza o distributie uniforma de amortizoare (Cunif = 4.000 kNs/m). Pentru fiecare structura cu n etaje se impun urmatoarele conditii in algoritmul distributiei optime:
Pornind de la cele doua seturi de conditii si alegand un numar de 400 de pasi, algoritmul de pozitionare optima conduce la distributia de amortizoare prezentata in figura 5. In figura 5 (a) avem variatia constantelor de amortizare cu pasul algoritmului, in timp ce in figura 5 (b) se prezinta variatia sensitivitatii functiei obiectiv. Algoritmul foloseste prima sensitivitate, crescand constanta de amortizare a amortizorului cu cea mai mica sensitivitate. Algoritmul se repeta pentru fiecare din cele cinci structuri calculate, obtinand, pentru fiecare structura, o distributie optima a amortizorilor vascosi.
In figura 6 (a) se prezinta variatia functiei obiectiv cu pasul algoritmului, in timp ce in figura 6 (b) se observa variatia amortizarii echivalente cu pasul algoritmului. Se observa ca pentru distributia optima functia obiectiv este mai mica in raport cu distributia uniforma in timp ce in cazul amortizarii echivalente aceasta este mai mare in cazul distributiei optime.
Algoritmul este folosit pentru toate structurile propuse, rezultatele fiind similare. In tabelul 1 se prezinta principalele rezultate ale algoritmului de amplasare optima.
Iata rezultatele analizelor realizate. Presupunand ca distributia deplasarilor este una lognormala, se calculeaza curbele IDA pentru deplasari.
In figura 8 avem curbele IDA pentru driftul total (intre baza si ultimul nivel): cu linii punctate fractilii curbelor 16 si 84% pentru fiecare model in parte. Diferenta in deplasari, pentru curbele medii, variaza, in functie de factorul de scalare, de la 26% si ajunge pana la 57% in cazul factorilor de scalare superiori. In aceasta situatie structura fara amortizoare este, practic, in stare de colaps. Diferentele intre distributia uniforma si cea optima in termeni de deplasari sunt intre 6% si 9%, in functie de factorul de scalare, in favoarea distributiei optime. In figura 8 (b) se prezinta fortele maxime din amortizoare pentru cele doua distributii. Este evident ca pentru distributia optima fortele din amortizoare sunt superioare celor din structura echipata cu amortizoare distribuite uniform. Cu toate ca la distributia uniforma sunt mai multe amortizoare decat in cazul distributiei optime, amortizoarele folosite in distributia optima dezvolta forte superioare, disipand mai multa energie. Diferentele in forte sunt intre 35-50%, in functie de nivelul de scalare.
Se evalueaza in continuare nivelul de performanta in care se gaseste structura pentru fiecare factor de scalare. Aceasta evaluare presupune indexarea stadiului fiecarui element din structura si, in functie de acesta, se calculeaza un indice (i) global de performanta. Suplimentar se stabilesc o serie de limite pentru fiecare nivel de performanta.
NOI, NSV, NPC reprezinta numarul de elemente care au cel putin o articulatie plastica al carei nivel de performanta este de ocupare imediata (OI), siguranta vietii (SV) si respectiv prevenirea colapsului (PC). Pentru structura de beton armat din figura 7, numarul total de articulatii plastice este Nt = 29 iar limita pentru nivelul de ocupare imediata este 0,75, 1 pentru siguranta vietii si 2,1 pentru prevenirea colapsului. La aceste valori se ajunge prin studierea mecanismelor de plastificare specifice structurii. Din figura 9 se observa scaderea indexului de performanta intre modelul fara amortizoare si cel cu amortizoare.
Daca pentru modelul fara amortizoare, la IMR 475 de ani, structura se afla in medie in zona de prevenire a colapsului, pentru cladirea cu distributie uniforma aceasta se afla in domeniul de siguranta a vietii, iar pentru distributia optima chiar in nivelul de performanta de ocupare imediata.
In continuare s-a studiat impactul introducerii amortizoarelor vascoase asupra elementelor de legatura. In cazul structurilor alese se studiaza variatia fortei axiale in stalpul adiacent amortizorului. Se observa efectul introducerii amortizoarelor, caracterizat prin cresterea fortei axiale, care este cu atat mai evident pentru factorii de scalare superiori.
Concluzii
Studiile numerice de caz au urmarit influenta amortizoarelor asupra raspunsului structurii si, in special, asupra deplasarii relative de nivel. Acest aspect este considerat cel mai important din punctul de vedere al algoritmului de optimizare, care are ca scop minimizarea functiei obiectiv si suma deplasarilor relative de nivel.
In tabelul 2 F.A., D.U., D.O. reprezinta acronime pentru modelul fara amortizoare, modelul echipat cu amortizoare cu o distributie uniforma si respectiv, optima. In liniile modelului fara amortizoare sunt reprezentate drifturile maxime, in linia corespunzatoare distributiei uniforme scaderea in procente intre modelul fara amortizoare si cel cu distributie uniforma. Pentru alcatuirea tabelului au fost luate in considerare rezultatele medii. Din tabelul centralizator se observa, in primul rand, scaderea importanta intre modelul fara amortizoare si modelul cu o distributie uniforma a amortizoarelor. Pentru nivelul de amortizare echivalenta, introdus de amortizoarele vascoase, se observa o scadere in driftul maxim in medie de 40%.
In ceea ce priveste diferenta dintre distributia optima si cea uniforma, aceasta variaza in functie de model. Variatia depinde de inaltimea structurii, astfel incat, pe masura ce structura are mai multe niveluri, cu atat diferenta dintre distributia optima si cea uniforma scade de la 7-10% la 1-2%. Cu toate ca diferentele in deplasari intre distributia optima si cea uniforma ajung pentru unele structuri sa nu fie semnificative (1-5%), trebuie retinut ca structurile in care amortizoarele vascoase sunt distribuite optim vor utiliza un numar redus de amortizoare (in medie 30%). Rezultatele in deplasari maxime, date de distributia optima, sunt egale si in general, superioare distributiei uniforme.
Pentru a reprezenta influenta introducerii amortizoarelor in structurile studiate se reprezinta curbele de fragilitate [12]. Curbele de fragilitate prezinta probabilitatea de depasire a unei marimi de raspuns, in cazul de fata indicele de performanta, a mai multor cladiri cu structuri similare, pentru diferite niveluri ale hazardului seismic. In figurile 11 si 12 se prezinta valorile discrete obtinute pentru probabilitatea de depasire a nivelului de ocupare imediata si curbele de fragilitate asociate acestor valori, pentru structurile din beton armat si otel studiate.
Se poate aprecia ca algoritmul de pozitionare optima produce rezultate bune si in domeniul neliniar de comportare. In ceea ce priveste posibilitatea de a folosi amortizoare pentru reabilitarea seismica a structurilor rezulta ca, pentru constructii cu regim scazut de inaltime, folosirea amortizoarelor vascoase poate conduce la o consolidare cu interventii minime asupra structurii de rezistenta existente. In cazul constructiilor cu regim de inaltime mai ridicat, cand masele structurii devin mult mai importante, trebuie sa se acorde o atentie sporita elementelor de care amortizoarele sunt legate si, cel mai probabil, acestea vor avea nevoie de o consolidare suplimentara. Chiar si in aceste conditii, datorita nivelului redus de interventii, reabilitarile cu amortizoare vascoase liniare pot fi considerate o solutie viabila si pentru aceste cladiri.
Bibliografie
[1] Kelly T., In-Structure Damping and Energy Dissipation. Wellington: Holmes Consulting Group, 2001;
[2] Takewaki I., Building Control with Passive Dampers, Optimal Performance Based Design for Earthquakes. Kyoto: Jon Wiley & Sons (Asia), 2009;
[3] Pricopie A. Gh., Cretu D., „Rehabilitation of Existing Structures using Optimal Viscous Damper Placement in the Seismic and Soil Conditions of Romania“, in 15 World Conference on Earthquake Engineering, Lisbon, september 2012;
[4] Constantinou M. C., Symans M. D., „Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers,“ Struct. Design Tall Buildings 2, pp. 93-132, 1993;
[5] Dargush G. F., Soong T. T., Passive Energy Dissipation Systems in Structural Engineering. New York, John Wiley & Sons, 1997;
[6] Pekcan G., Chen S. S., Mander J. B., „The Seismic Response of a 1:3 Scale Model R.C. Structure with Elastomeric Spring Dampers,“ Earthquake Spectra 11, pp. 249-267, 1995;
[7] Vanmarcke E. H., Gasparini D. A., „Report 2 Simulated Earthquake Motions Compatible with Prescribed Response Spectra,“ Cambridge, 1976;
[8] PEER GMSM, „Evaluation of Ground Motion Selection and Modification Methods: Predicting Median Interstorey Drift Response of Buildings,“ Chico, California, 2009;
[9] Naumoski N., „Program SYNTH: Generation of Artificial Accelerograms Compatible with Target Spectrum,“ 1998;
[10] Seismosoft, SeismoMatch v 1.3.0, 2011;
[11] M. Romero Martinez Rodrigo, „An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications,“ Engineering Structures 25, pp. 913-925, 2003;
[12] A. Pricopie, „Atenuarea raspunsului seismic prin folosirea amortizoarelor vascoase”, teza de doctorat, UTCB, septembrie 2012.
(Din AICPS Review nr. 3/2012)
…citeste articolul integral in Revista Constructiilor nr. 102 – aprilie 2014, pag. 24
Autori:
asist. univ. dr. ing. Andrei PRICOPIE,
prof. univ. dr. ing. Dan CRETU – Universitatea Tehnica de Constructii Bucuresti
Daca v-a placut articolul de mai sus
abonati-va aici la newsletter-ul Revistei Constructiilor
pentru a primi, prin email, informatii de actualitate din aceeasi categorie!
Lasă un răspuns