In scopul izolarii seismice a unei cladiri sau zone construite, o metoda viabila se dovedeste a fi realizarea unor fante verticale, de o anumita adancime, in teren. Prin crearea acestor fante se obtine o noua redistribuire a vitezei undelor seismice superficiale si, respectiv, o zona neutra in care viteza undelor seismice si eforturile unitare din seism, in teren, sunt nule. In acest sens, prin aplicarea metodei transformarii conforme, se deduce repartitia vitezelor seismice in zona afectata de fanta, in functie de viteza undelor seismice din semiplanul neafectat. In concluzie, prin crearea unei retele de fante verticale in teren, de o anumita adancime, in functie de distanta dintre fante masurata pe directia de propagare, precum si de adancimea de fundare a constructiei, se poate obtine o bariera antiseismica.
In zonele din campul indepartat, undele seismice dominante sunt cele de suprafata, undele Rayleigh, indicate schematic in figura 1 [1].
Viteza de propagare a acestor unde scade exponential cu adancimea, conform relatiei:
unde:
ν*0 – viteza la suprafata (ν = 0);
ω – pulsatia undei seismice;
c – viteza undelor de suprafata;
ν – adancimea curenta.
c < b < a (2)
unde:
a – viteza undelor longitudinale in teren (P);
b – viteza undelor transversale in teren (S);
c – viteza undelor de suprafata (R).
Prin crearea unei fante verticale in teren se obtine o intrerupere a mediului continuu si, deci, o micsorare a vitezei de propagare a undelor. Acest fenomen constituie baza defectoscopiei, disciplina vizand depistarea fisurilor, defectelor de structura etc., ale unui material in functie de viteza de propagare a ultrasunetelor [2].
In cazul de fata, prin crearea unei fante in teren, se poate obtine o noua redistribuire a vitezelor de propagare si, implicit, a starii de tensiune in masivul de teren aferent.
Determinarea spectrului vitezelor de propagare a undelor seismice in zona fantei verticale
In vederea obtinerii spectrelor de viteze din zona fantei se recurge la metoda matematica a transformarii conforme, prin care planul ce contine fanta verticala este transformat in planul complex al semiplanului continuu. Cele doua planuri sunt prezentate in figura 2.
Transformarea planului a) in planul b) se face cu relatia de transformare conforma [3], [4]:
Operand transformarea data prin relatia numarul (3) se obtin in final expresiile:
unde:
si
Pentru diferite valori ale lui λ si μ se obtin doua familii de curbe ortogonale conform figurii 3.
Curbele λ si μ reprezinta niste hiperbole, respectiv parabole, care sunt ortogonale, avand in vedere ca transformarea conforma conserva unghiurile. Se observa ca pentru u –> ∞, respectiv v –> ∞ reteaua de curbe λ si μ tind spre o retea de drepte ortogonale din planul din figura 2 b), confirmand principiul lui Saint-Venant.
Se constata ca in toata zona situata deasupra curbei λ = 0 viteza de propagare e nula, adica in aceste zone undele nu se propaga (in figura 3, zona este colorata in galben).
Curba λ = 0 se apropie asimptotic de nivelul terenului, v = 0. Pentru scopuri practice se considera ca distanta la care curba asimptotica atinge linia orizontala v = 0 este in jur de aproximativ D = 0,25 – 1,1 h. Determinarea exacta depinde de natura terenului si prezenta apei in teren.
Analogii
Problema propagarii undelor in semiplanul cu fanta este analoaga cu problema distributiei tensiunilor intr-o banda de latime B solicitata la intindere conform figurii 4.
Se observa ca traiectoriile eforturilor unitare de intindere se concentreaza in jurul fantei din banda respectiva pe latimea B. De asemenea, se observa o zona neutra lipsita de eforturi, indicata in figura 4 cu culoarea galbena. O alta analogie se refera la problema hidraulica privind scaderea nivelului apei freatice prin pompare dintr-un put de adancime H cand, de asemenea, deasupra liniei superioare de curent hidraulic se obtine o zona lipsita de apa. Procedeul pomparii in puturi se aplica pentru lucrarile in terenuri cu nivel de apa ridicat.
ELEMENTE PRIVIND REALIZAREA UNEI BARIERE ANTISEISMICE
Anterior s-a aratat ca, prin crearea unei discontinuitati in teren cu ajutorul unor ecrane de fante dispuse in directie perpendiculara pe directia principala a actiunii seismice, se obtine o zona neutra din punct de vedere al vitezei undelor superficiale si, implicit, a acceleratiilor terenului. Aceasta linie de demarcatie intre zona neutra si zona activa a undelor seismice reprezinta o curba hiperbolica variabila, valoarea maxima a inaltimii zonei neutre fiind in dreptul fantei respective. Aceste ecrane de fante se pot executa numai in zonele libere de constructii: arterele de circulatie, parcuri, zone virane fara constructii etc. In functie de parametrii urmatori, adancimea h – adancimea fantei si distanta intre fante, d, in lungul directiei de propagare se prezinta mai multe situatii, conform figurii 5.
Daca d < d0, atunci se obtine in zona minima o cota „vf”.
Daca d > d0, conform figurii 5 c), va rezulta o zona neprotejata „d”, chiar la nivelul terenului, la cota de fundare, pe distanta „a”.
De asemenea, curba λ0 trebuie sa se afle sub cota de fundare, adica vf > hf, in care hf este C.F. – C.T.N. (fig. 6).
In cazul cladirilor inalte, si implicit mai grele, pe langa conditia expusa mai sus, mai este nevoie si de conditia ca distanta de la cladire la fanta verticala, respectiv ecran, sa fie > dmin, in care dmin reprezinta o distanta la care executia ecranului nu influenteaza tasarea cladirii respective (fig. 7).
In figura 8 este reprezentata o sectiune verticala printr-o localitate cu amplasarea fantelor verticale in dreptul arterelor de circulatie.
CONCLUZII
Cele de mai sus descriu, sub aspect teoretic, un model de realizare a unei zone ferite de actiunea seismica a undelor de suprafata pentru cladirile situate in camp indepartat (dominante fiind undele de suprafata – R). Metoda consta in crearea unor ecrane verticale dispuse perpendicular pe directia actiunii seismice, zona de protectie fiind determinata de adancimea h a ecranului si distanta in lungul directiei de propagare a undelor seismice.
Ramane ca experimentele in teren sa determine conditiile detaliate ale parametrilor h si d pentru a se putea aplica practic metoda prezentata.
Multumiri
Pe aceasta cale aduc multumiri d-rei ing. Bianca Pasc pentru ajutorul esential acordat la redactarea acestei lucrari.
Bibliografie
[1] http://www.geo.mtu.edu/UPSeis/waves.html, ©2007 Michigan Technological University;
[2] Cornea, I., Oncescu, M., Marmureanu, G., Balan, F. – Introducere in mecanica fenomenelor seismice si inginerie seismica, Editura Academiei R.S.R., 1987;
[3] Cramariuc, R. – Transformari conforme in fizica si electrotehnica, Editura Stiintifica si Enciclopedica, Bucuresti, 1984;
[4] Westergren, B., Rade, L. – Springers mathematische Formeln, Editura Springer, 1995.
(Din AICPS Review nr. 2/2021)
Autor:
ing. Radu Victor MARINOV – consilier SC Path’s Route, Timisoara
…citeste articolul integral in Revista Constructiilor nr. 196 – octombrie 2022, pag. 62
Daca v-a placut articolul de mai sus
abonati-va aici la newsletter-ul Revistei Constructiilor
pentru a primi, prin email, informatii de actualitate din aceeasi categorie!
Lasă un răspuns